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Background: Estimation of stochastic process models from data is a common application of time series 
analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose 
intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) 
regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for 
models being described by non-homogeneous, linear, stationary, ordinary differential equations. 
Methods: In this paper we extend stochastic model identification to linear, stationary, partial differential 
equations in two independent variables (2D) and show that OLS and LMA apply equally well to these 
systems. The method employs an original nonparametric statistic as a test for the significance of estimated 
parameters.
Results: We show gray scale and color images are special cases of 2D systems satisfying a particular 
autoregressive partial difference equation which estimates an analogous partial differential equation. Several 
applications to medical image modeling and classification illustrate the method by correctly classifying 
demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental 
State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier 
is at least 14 times faster than any of them and has a classification accuracy better than all but one.
Conclusions: Our modeling method applies to any linear, stationary, partial differential equation and 
the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image 
classifier, estimated image models offer insights into which parameters carry the most diagnostic image 
information and thereby suggest finer divisions could be made within a class. Image models can be estimated 
in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time 
medicine and surgery modeling possible.  
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Introduction

When viewing a complete, as opposed to a region of 
interest, medical image such as an axial MRI brain scan, the 
diagnostician typically makes an overall image assessment 
and then studies from region to region seeking elements 
of normal structure and pathology. The eye cannot readily 
assess the thousands of small image regions for comparison. 
Thus, image fine structure information at the individual pixel 
level, of necessity, has been visually ignored. Whether such 
fine structure of closely spaced pixels, of any size image, will 
be useful for medical purposes is an open question since it 
has been difficult to obtain such data. Further, in the problem 
of diagnosing neurological diseases, our bioengineering 
application addresses a long recognized clinical need of 
dementia diagnosis: MR image quantification has been, and 
still is, an arduous task, currently requiring considerable 
processing time and operator attention (1). In Alzheimer’s 
disease (AD), for example, it is difficult to distinguish normal 
aging changes of increased ventricular and sulcus size from 
AD degeneration. 

The definitive diagnosis of dementia is by autopsy but of 
the ten recognized cognitive tests, the most popular in use is 
the Mini Mental State Examination (MMSE) which has the 
best correlation with autopsy outcomes and is the most useful 
in following diagnosed dementia over time (2). Therefore we 
use subject MMSE scores to categorize normal or demented 
subjects. To support this definition of subject cognitive state, 
we seek a brain scan image model whose parameters not only 
capture discriminating image information but also indicate 
which parameters of the image carry the most discriminating 
information as measured by their inferred confidence 
intervals (3). 

Materials and methods

Our original computational method is based on ordinary least 
squares (OLS) regression because we discovered a simple 
matrix transformation that enables images to be represented 
as linear combinations of row and column spatial lags of 
the original image. These row and column lagged images 
give rise to the “fine structure” description of the images we 
model because the row and column spatially lagged images 
are visually indistinct from the original. The key step in our 
analysis is to transform any two dimensional (2D) image pixel 
array to a one dimensional (1D) pixel array. Next we show 
that transformed images can be modeled by traditional OLS 
methods. Therefore, under verified distributional conditions, 

the OLS model parameters can be tested for statistical 
significance. This is an important model property as it means 
recognized neurological conditions can be tested for causality 
by parameter significance. In addition, the most significant 
parameters carry the most discrimination information in 
implementing image classifications. 

Image model development 

To reduce a 2D pixel array (an image) to a 1D pixel array 
(a column) a transformation called vectorization is applied 
by stacking the left-most column of image pixels onto its 
neighbor pixel column and these two columns onto the 
third and so on, until all pixel columns are stacked (4). For 
example, an image A of 208 rows and 176 columns of pixels 
becomes a single column of [208] × [176]=36,608 pixels. 
We call this column the vectorized form of A and write it as 
vec(A). The next step is to recognize that any image y(i,j), 
whose intensity y at pixel location (i,j), can be hypothesized 
to be a solution of the linear autoregressive (AR) model (5).

( ) ( )0 0
( , ) , ,p q

klk l
y i j y i k j l u i jβ

= =
= − − +∑ ∑ [1]
0k l+ >

In Eq. [1], u(i,j) is a random process error term and we 
note Eq. [1] is a discrete approximation to a general, linear, 
causal ,partial differential equation in two space dimensions.

The final step is to show, see Appendix A1, that if ct and 
At are real constants and matrices then:

( ) ( )1 1
vec veck k

t t t tt t
c A c A

= =
=∑ ∑ [2]

Define yo = vec[y(i,j)], x1 = vec[y(i,j-1)], x2 = vec[y(i-1,j)], 
..., xp+q+qp = vec[y(i-p,j-q)], and uo = vec[u(i,j)]. By Eq. [2], the 
model in Eq. [1], with β as a column vector with p+q+qp 
elements βkl, has the familiar OLS regression form.

( )1 2o p q qp o oy x x x u X uβ β+ += + = +

[3]

In  Eq .  [ 3 ] ,  X β  i s  c a l l ed  a  min imum var i ance 
representation (MVR) of the vectorized image yo if a β can 
be found such that uo

T uo is minimized. A necessary and 
sufficient condition that such a β exists is:

MVR existence theorem: [Th1].
An image of pixel intensity y(i,j) has a MVR in the form 

of 

( )0 0
, 1 ,p q

klk l
X vec y i k jβ β

= =
 = − − ∑ ∑  

if and only if k+l>0, the image column vectors x1 x2 ... xp + q + pq 
are linearly independent.

When this condition is met the minimizing β satisfies:
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( ) 1T T
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and the image MVR is:

( ) 1T T
oX X X X X yβ

−
= [5] 

The finite sample form of Eq. [3] employed to estimate β is

[6]o oy Xb e= +

where b is the OLS estimate of the population (true) 
value β and the vector eo estimates the random residual 
vector uo. Using the format of Eq. [6], each image of the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 
Open Access Series of Imaging Studies (OASIS) data sets 
had an estimated MVR, denoted as Xb, minimizing eo

Teo and 
computed as: 

[7]( ) 1T T
ob X X X y

−
=

( ) 1T T
oXb X X X X y

−
= [8]

The integer p, q orders are determined by increasing p 
and q so that (XTX)−1 exists for all image data. For both the 
ADNI and OASIS data this was for p=q=2. Larger p or q 
made (XTX) ill-conditioned. If the image to be modeled is 
m by n pixels then the minimum variance realization Xb of 
the image is a column vector of (m-p) × (n-q) by 1 pixels. To 
realize the 2D picture of Xb it must be unstacked into 2D 
image model starting at the top of Xb.

Only in the rarest of cases will the residual vector eo 
in Eq. [6] test to be white Gaussian noise which would 
permit Student’s t-tests of parameter statistical significance. 
So we have developed, see Appendix A2, a nonparametric 
significance statistic, wkl,  based on the Chebychev  
inequality (6). |wkl| measures the width, normalized by 
bkl, of a 1-α confidence interval of the true βkl. The smaller 
|wkl| is for a given bkl, the more significant is the estimated 
parameter bkl multiplying lagged image vec[y(i-k,j-l)]. For 
the diagnostician the confidence interval of βkl is the most 
important property derived from its estimate bkl since it tells 
him the probability with which the true parameter he seeks, 
βkl, is estimated by what he estimates, bkl.

The X matrix in Eq. [6] has eight column vectors, eight 
spatially lagged, vectorized images of y(i-k,j-l) for k =0,1,2, 
l =0,1,2, k + l >0. However, we found that adding a column 
of ones to X to account for image sample means slightly 
increases the likelihood of correct classification as developed 
in the following section. Relative to the theoretical model in 
Eq. [1], this amounts to adding a constant to the right-hand 
side. The column of ones is crucial because it assures the 

residual vector eo in Eq. [6] and is estimated without bias, a 
bias which would also induce a bias in the estimated vector b.

Optimal image classification

In this section we derive a discriminator by which a given 
subject’s MMSE score identifies the subject as normal or 
demented and also gives a ranking statistic to compare with 
other subjects in the same class. A range of MMSE scores is 
chosen and subjects with scores in that range are categorized 
as members of the demented class. Another unique MMSE 
range is chosen for those subjects categorized as normal 
subjects. Let Nd and Nn be the respective number of subjects 
in each class. For each subject Eq. [7] estimates a b vector of 
size p+q+pq+1=9. These are arranged in parameter matrices 
Bd, 9 by Nd and Bn, 9 by Nn and the pooled parameter matrix 
Bp which is 9 by Nd + Nn. Let ˆ

dΩ , ˆ
nΩ , ˆ

pΩ  be estimates of 
the covariance matrices of Bd, Bn, and Bp. The projections 
onto the scalar z axis of zn = Bnv, zd = Bdv, and zp = Bpv are 
maximally separated in sample means if the projection 
vector v satisfies the Fisher linear discriminant eigenvector 
identity (7), 

( ) ( )1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ

p n d n dn n n v n n vΩ Ω Ω γ Ω Ω− − = + [9]

for the only nonzero eigenvalue γ1. In Eq. [9], n1 = Nd + Nn –1, 
n2 = Nn –1, n3 = Nd –1. For even modest sample sizes, Nd and 
Nn ≥10, a Kolmogorov-Smirnov test (K-S test) confirms the 
hypothesis the z projections are normally distributed (8).

Since zn and zd are normally distributed with estimated 
densities fn(z) and fd(z), the Kullback-Leibler discrimination 
(KLD) statistic for a zero threshold, Lo(z), is a convenient 
means of comparing projections for “strength of class 
membership” since |Lo(z)| is monotonic with membership 
probability (9).

( ) ( ) ( )
( ) ( ) ( )2 22 2

ln /

ln / / 2 / 2

o d n
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= + − − −
[10] 

In Eq. [10], means and variances are estimated from the 
sample z projections. Lo(z) >0 classifies a z-projection as 
demented and Lo(z) <0 as a normal. 

The KLD statistics provide a graphical display of TP, 
TN, FP, and FN measures of the classification algorithm.

Large-sample ADNI dataset

Our large sample study employed ADNI archive axial MR 
image slices. The images were 1.5 T, T1 weighted using 
the MP Rage sequence, calibration scans for B1 correction, 
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dual fast spin echo and were 256 by 170 gray scale pixels. 
All ADNI images were selected from one slice axially 
above the anterior commissure brain structure. ADNI 
subject inclusion criteria varied over four classes: (I) normal 
subjects had no subjective memory complaints; (II) normal 
memory function stratified by educational attainment; 
(III) MMSE scores between 24 and 30; and (IV) a Clinical 
Dementia Rating (CDR) of 0. EMCI subjects had subjective 
memory complaints, abnormal memory function stratified 
by age, MMSE 24 to 30, a CDR of 0.5, and AD could not 
be diagnosed at time of screening visit. LMCI subjects had 
the same criteria as the EMCI subjects but educational 
attainment was lower. AD subjects had memory complaints, 
abnormal memory function, MMSE scores 20 to 27, CDR 
of 0.5 to 1.0, and satisfied a NINCDS criteria for probable 
AD. The 50 subjects we took as normal were screened as 
males, ages 65 to 84 years with MMSE scores of 29 to 30. 
The 47 subjects we took as demented were of ages 65 to 
84 years with MMSE scores of 17 to 27. Therefore the 97 
subjects were identified as normal or demented according 
to the range of their MMSE scores. The 97 subjects so 
identified exhausted the four classes cited above for the 
constraints we specified. It is likely that about 70% of the 
categorized demented subjects suffered from AD (10). 
The chosen MMSE score ranges are typical for normal/
demented studies with 20 year age spans (2). All ADNI axial 
images had cranium and dura artifacts manually cropped. 
Figure 1 displays typical ADNI images. 

Small-sample OASIS data set

Our small sample study employed OASIS axial MR image 
slices screened as right-handed males of ages 65 to 75 years 
with MMSE scores of 29 to 30. The database produced 
14 such images we refer to as the normal class. Screening 
for right-handed males of ages 67 to 84 years with MMSE 
scores of 17 to 27 produced 12 images we refer to as the 
demented class. These images came from a set of 416 
subjects aged 18 to 96. For each subject, 3 or 4 individual 
T1-weighted MRI scans obtained in single scan sessions 
were averaged to get the images, 208 by 176 pixels, for our 
study. A total of 100 of the included subjects over the age of 
60 had been clinically diagnosed with very mild to moderate 
AD, in addition, a reliability data set of 20 non-demented 
subjects imaged on a subsequent visit within 90 days of their 
initial session were available as normal subjects. OASIS 
images had dura and cranium artifacts manually cropped. 
All axial images from the OASIS archive were at a fixed, 
unspecified number of 1.5 mm slices from the anterior 
commissure brain structure. Figure 2 are typical OASIS 
images.

Results

Typical image OLS models, parameters, and statistics

All 123 images were modeled using the OLS Eqs. [7] and [8] 
and the |wkl| significance statistics (for a 95% confidence 

Figure 1 (A) Typical MMSE-designated normal MR axial images from a sample of size 50 from the ADNI national archive; (B) typical 
MMSE-designated demented MR axial images from a sample of 47 from the ADNI national archive. Subjects matched for age and gender. 
MMSE, Mini Mental State Examination; ADNI, Alzheimer’s Disease Neuroimaging Initiative.

A

B
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interval) computed for all bkl parameters. Figure 3 is a typical 
OLS scatter diagram, this for a demented subject from the 
OASIS dataset. The regression R2 for this model is typical 
of image regressions for both datasets as they all exceeded 
99%. Figure 4 illustrates typical estimation results for two 
OASIS subjects and Table 1 lists the OLS bkl parameters and 
|wkl| statistics for the images in Figure 4. Typical normal 
and demented images and models of ADNI subjects are 
shown in Figure 5; bkl parameters and |wkl| statistics for 
these two ADNI subjects are in Table 4. 

Sample means of model parameters and their significance 
statistics

Table 3 tabulates sample means of estimated parameters and 
sample means of their |wkl| statistics for the OASIS dataset 
and Table 2 tabulates these sample means for the ADNI 
dataset. With sample sizes of 50 and 47, the entrees in Table 2  
are highly significant. For example, an interpretation of 
the mean(|wkl|) value of b01 is: with a probability of 0.95 
the average true demented parameter β01 is in the interval 
1.0812±0.0232; for normal subject b01 the 95% interval of 
β01 is 1.1174±0.0228. 

Table 3 entrees for the OASIS (26 samples) dataset do not 
differ dramatically from the ADNI Table 2 entrees but there 
is a subtle shift of the most significant bkl parameter from b10 
for the OASIS data to b01 for the ADNI data. This shift is 

Figure 2 (A) Typical MMSE-designated normal MR axial images from a sample of size 14 from the OASIS archive; (B) typical MMSE-
designated demented MR axial images from a sample of size 12 from the OASIS archive. Subjects are matched for age and gender. MMSE, 
Mini Mental State Examination; OASIS, Open Access Series of Imaging Studies.

A

B

Figure 3 A scatter diagram of a typical regression determining a 
MVR of a demented subject from the OASIS archive. Horizontal 
axis is the scale for the pixel intensities of the vectorized image 
yo. The vertical axis is the scale for the vectorized image model 
pixel intensities Xb estimated by the regression formula Eq. [8]. 
Regression models of all 123 subjects from both archives had R2 
exceeding 99%. MVR, minimum variance representation; OASIS, 
Open Access Series of Imaging Studies.
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interpreted later.

Optimal image classification

Figure 6 shows the inferred probability density functions of 
the ADNI z-projections resulting from projecting the bkl 
parameters with the eigenvector solution of Eq. [9]. These 
probability densities passed K-S tests for normality at level 
10−5 which decisively supports the classification probability 

inference of the KLD statistics, computed from Eq. [10] 
and also shown in Figure 6. Figure 7 shows the inferred 
z-projection probability density functions for the OASIS 
subjects. These densities passed K-S tests for normality at 
level 10−3. An interpretation of the KLD statistics for the 
demented (normal) projections is that the larger (smaller) 
the KLD statistic is, then the more likely the sample is 
correctly classified. For example, in Figure 7 the leftmost 
z-projection (near 114.4) corresponds to demented 

Figure 4 (A) A MMSE-designated normal image from the OASIS archive and a 9 MVR of that image; (B) a MMSE-designated demented 
image from the OASIS archive and a 9 MVR of that image. The bkl parameters and their |wkl| parameter significance statistics for the 
models of Figure 4 are listed in Table 1. With |w01| =0.0412 for the normal subject, b01 is the most significant parameter for the normal image 
model and |w01| =0.0432 for b01 of the demented subject makes this parameter the most significant for the demented subject. MMSE, Mini 
Mental State Examination; OASIS, Open Access Series of Imaging Studies; MVR, minimum variance representation.

Table 1 A listing of ordinary least squares estimates of the bkl parameters for the normal and demented OASIS brain scans of Figure 4. The 
|wkl| statistics measure the normalized width of a 95% confidence interval of the true parameter βkl. The smaller |wkl| the more significant is 
the parameter in determining the image model. For both of these images b01, relating y(i,j) and y(i,j-1), is the most significant parameter

Xb b0 +b01x1 +b02x2 +b10x3 +b11x4 +b12x5 +b20x6 +b21x7 +b22x8

Normal bkl 0.4375 1.1139 −0.3471 0.9891 −0.9051 0.2361 −0.2781 0.2425 −0.0590

Normal |wkl| 0.8304 0.0412 0.1284 0.0479 0.0845 0.2778 0.1640 0.2841 0.7996

Demented bkl 0.4937 1.0616 −0.3233 1.0130 −0.8535 0.2121 −0.2752 0.1910 −0.0380

Demented |wkl| 0.7274 0.0432 0.1373 0.0461 0.0896 0.3125 0.1641 0.3531 1.2440

OASIS, Open Access Series of Imaging Studies.
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Figure 5 (A) Typical MMSE-designated normal MR axial images from a sample of size 50 from the ADNI archive; (B) typical  
MMSE-designated demented MR axial images from a sample of size 47 from the ADNI archive. Subjects are matched for age and gender. 
For these images b01 is the most significant parameter (see Table 2), while for the OASIS images (see Figure 4), b10 is the most significant 
(see Table 3). MMSE, Mini Mental State Examination; ADNI, Alzheimer’s Disease Neuroimaging Initiative; OASIS, Open Access Series of 
Imaging Studies.
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Table 2 A listing of bkl and |wkl| sample means for 47 demented and 50 normal ADNI subjects. Unlike the OASIS models, for each class 
b01 is on average the most significant parameter (minimum |wkl| sample means) and numerically largest parameter

Xb b0 +b01x1 +b02x2 +b10x3 +b11x4 +b12x5 +b20x6 +b21x7 +b22x8

Normal

Mean(bkl) 0.3803 1.1174 −0.3568 1.0528 −0.9609 0.2596 −0.2990 0.2192 −0.0392

Mean(|wkl|) 0.8215 0.0409* 0.1253 0.0442 0.0812 0.2586 0.1502 0.3144 1.2033

Demented

Mean(bkl) 0.4572 1.0812 −0.3212 1.0337 −0.8859 0.2019 −0.2815 0.1755 −0.0115

Mean(|wkl|) 0.7724 0.0431* 0.1395 0.0456 0.0872 0.3328 0.1615 0.3937 4.0859

*, indicates minimum. ADNI, Alzheimer’s Disease Neuroimaging Initiative; OASIS, Open Access Series of Imaging Studies.

sample number 7 with KLD of 20. On the other hand, the 
demented projection near 115.4 corresponds to sample 
number 2 which has a negative KLD and this sample is 
misclassified. 

We also performed a cross validation test for the ADNI 
images by randomly selecting 12 normal and 12 demented 
subjects to be test subjects for a training classifier based on 
38 normal and 35 demented subjects. The results of that 

test are shown in Figure 8. In that figure the accuracy of the 
training classifier (inferred z-projection densities shown) 
was 69/73=94.5%, while the test subjects were classified 
with an accuracy of 22/24=91.7%.

Comparison with other medical image classifiers

The first comparison study is selected because it is 
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Figure 6 (A) Estimated z-projection probability densities resulting from the Fisher linear discriminant projections of the normal and 
demented bkl parameter matrices Bn and Bd for all of the ADNI image models; (B) the KLD statistics calculated from Eq. [10]. KLD statistics 
measure the likelihood a given subject is correctly classified; more negative normal and more positive demented KLD statistics imply higher 
likelihood of correct classification. For example, the largest demented KLD statistic is 9 for subject number 3, the right-most sample in 
Figure 6A. This demented subject is clearly the most likely to be correctly classified. ADNI, Alzheimer’s Disease Neuroimaging Initiative; 
KLD, Kullback-Leibler discrimination.
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Table 3 A listing of bkl and |wkl| sample means for 12 demented and 14 normal OASIS subjects. For each class b10 is on average the most 
significant parameter (minimum |wkl| sample means) and numerically largest parameter

Xb b0 +b01x1 +b02x2 +b10x3 +b11x4 +b12x5 +b20x6 +b21x7 +b22x8

Normal

Mean (bkl) 0.1624 0.9222 −0.2480 1.1688 −0.896 0.2131 −0.3702 0.2421 −0.0378

Mean (|wkl|) 1.0643 0.0467 0.1684 0.0353* 0.0788 0.3015 0.1087 0.2392 1.1431

Demented

Mean (bkl) 0.2378 0.8494 −0.2262 1.1589 −0.7900 0.2040 −0.3701 0.2205 −0.0532

Mean (|wkl|) 1.0401 0.0514 0.1855 0.0357* 0.0876 0.3149 0.1082 0.2559 0.8121

*, indicates minimum. OASIS, Open Access Series of Imaging Studies.

Table 4 A listing of ordinary least squares estimates of the bkl parameters for the normal and demented ADNI brain scans of Figure 5. The 
|wkl| statistics measure the normalized width of a 95% confidence interval of the true parameter βkl. The smaller |wkl| the more significant is 
the parameter in determining the image model. For both of these images b10, relating y(i,j) and y(i-1,j), is the most significant parameter

Xb b0 +b01x1 +b02x2 +b10x3 +b11x4 +b12x5 +b20x6 +b21x7 +b22x8

Normal bkl 0.2453 0.7594 −0.1110 1.1928 −0.7366 0.0769 −0.4121 0.2426 −0.0183

Normal |wkl| 1.1042 0.0588 0.3889 0.0341 0.0936 0.8538 0.0961 0.2245 2.3603

Demented bkl 0.2335 0.8030 −0.2136 1.2374 −0.7847 0.1854 −0.4232 0.2195 −0.0294

Demented |wkl| 1.0471 0.0547 0.1978 0.0327 0.0893 0.3597 0.0927 0.2515 1.4738

ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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Figure 7 (A) Estimated z-projection probability densities resulting from the Fisher linear discriminant projections of the normal and 
demented bkl parameter matrices Bn and Bd of the OASIS image models; (B) the KLD statistics are computed as described in the Figure 6 
caption. Demented subject number 7 has a KLD of 20 and a z-projection in Figure 7A of 114.4. OASIS, Open Access Series of Imaging 
Studies; KLD, Kullback-Leibler discrimination.

Figure 8 Z-projection probability density functions estimated from 38 normal and 35 demented ADNI subject images. Density functions 
represent a classification accuracy of 94.5%. Accuracy for the 24 test images is 91.7%. ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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comprehensive in feature extractions (gray level histogram, 
gray level co-occurrence matrix, shape invariant moment, 
and FFT frequency), uses an average of 408 CT and MR 
images (102 testing for a 25% testing-to-training ratio) and 
tests 4 popular classification methods (C4.5, SVM, naive 
Bayes, KNN) (11). The averages over feature extractions 
shown in Table 5 are to be compared to our OLS method’s 

91.7% accuracy using a 24.2% testing-to-training ratio. 
The authors give no computational time or computer 
specification results.

The second comparison study is selected because it tests 
an advanced form of the random forest (RF) classifier, uses 
a test–to-training ratio of 33% on 300 region of interest 
MR images of 256×216 pixels each (12). They report a 
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computation time of 304 seconds average with 86.4% 
accuracy using a 2.66 GHz machine of unspecified RAM.

The final comparison study is selected because it 
tests three forms of the RF classifier, uses 10 fold cross-
validation, and gives comprehensive computation times 
using a 3.4 GHz, 12 GB RAM computer (13). Images are 
3 color of 174 colon biopsies. The grid size modeled is a 
rather crude 49 blocks. The original feature set produced 
an accuracy of 91.3% averaged over the three classifiers. 
Increasing features from 20 to 50 boosted the average 
accuracy to 93.0% with run times of 104 seconds averaged 
over the three RF classifiers. The authors quote five 
other comparable colon studies whose average accuracy is 
85.43%. 

The dramatic difference between our OLS method and 
those cited above is computation time. Using a 3.00 GHz 
computer with 3.72 RAM our all-training result, Figure 6,  
required 0.9014 seconds, Figure 7 took 0.2516 seconds 
while Figure 8 required 0.6466 seconds. The RF classifier 
of ROI images (of a comparable number of pixels) cited 
above required 224 seconds on a machine 13% slower than 
ours. Derating 224 seconds by 13% and increasing our 
run time by 300/73 to compensate for sample sizes implies 
our runtime is 195/2.66=73.3 times faster than the cited 
classification of ROI images.

The colon biopsy classifiers must classify red, green and 
blue images so we must triple our runtimes and compensate 
for sample sizes by 174/73. This gives our estimated 
comparable runtime of 0.6466×3×2.38=4.62 seconds which 
is 104/4.62=22.5 times faster than the RF image classifiers. 
Individually, the red, green and blue images required 34, 
48, and 22 seconds respectively. OLS equivalent time is 
2.38×0.6466=1.54 seconds for each color. 

Summary

Including the 5 colon studies cited in (13), we have compared 
our OLS classifier to 13 classifiers from the literature and 
our training-test accuracy of 91.7% is better than all but one 
average. 

In the runtime domain, none of the cited classifiers is 

competitive with the OLS classifier. The lowest runtime 
cited for the reviewed classifiers is a minimum of 14 times 
slower than the OLS classifier.

The implied superiority of the OLS method over the 
comparison image classification methods in accuracy and 
computation times results from two properties of the OLS 
method: (I) the OLS image models are rigorously defined in 
terms of statistical estimation of partial difference equation 
solutions; (II) the vec(.) transformation and its theoretical 
preservation of the OLS format for the partial difference 
equation model and [Th1], is complemented by a runtime-
optimized vec(.) function on Matlab.

Discussion

The innovation of OLS image modeling

Modeling of discrete time series, representing native 
discrete time systems or discretized ordinary differential 
equations, has advanced to the stage that transfer function 
theory and ubiquitous software to model data are 
commonplace (14-16). OLS is the estimation method of 
choice for such linear system models (also called 1D system 
because they employ one independent variable). In our 
past work we have found the estimated parameters of such 
models are capable of classifying the subject data they model 
and can provide insight into physical system interpretations 
(17-21).

The AR model hypothesis in Eq. [1], the vector 
transformation in Eq. [2], and the MVR theorem [Th1] 
make available to 2D modeling all of the methods cited 
above for 1D systems. Further, images are a special case of 
2D systems which include image modalities of X-ray, US, 
MRI, PET, and SPECT.

Interpretation of image model parameters for large brain 
scans

While OLS models of medical image parameters are 
capable of robust image classification, an equally important 
utility lies in their diagnostic potential.

Diagnosis is taken to be at two image sizes: (I) entire 

Table 5 Average accuracy of 12 categories of medical X-ray images (average sample size 306 training, 102 testing). Feature types are 
gray-level histogram, gray level co-occurrence matrix, shape invariant moment, FFT frequency (11)

Classifier types C4.5 SVM Naive Bayes KNN

Average accuracy over feature types 84.71% 90.45% 76.03% 86.61%
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brain scans, for example the axial brain scans of this study; 
(II) and ROI size images which are not investigated in this 
study. An interpretation of average image parameters we 
found in image height to width ratios. This ratio calculated 
for all ADNI and OASIS images averages 24.9% greater for 
the ADNI images. Thus, the subtle shift, noted above, in 
the most significant parameters b10 in Table 3 to b01 in Table 2  
is due to the ADNI images having more informative pixel 
columns than rows, thereby favoring correlations between 
y(i,j) and y(i,j-1) as measured by b01. Analogously, b10, 
relating y(i,j) and y(i-1,j), is more significant for the OASIS 
images whose pixel rows are more informative than their 
columns.

Image parameter medical interpretation addresses the 
difficulty in distinguishing which of seven possible dementia 
types a given subject is suffering. Having nine parameter 
image models and statistics to measure individual parameter 
significance presents the opportunity to design a study 
in which cognitive test scores and post mortem dementia 
identification outcomes can be used to identify parameters 
or groups of parameters specific to dementia types.

Figures 1,2 and 4,5 indicate a large within-sample 
variation in ventricle size as a percent of total brain scan. To 
determine the possible classifying effect this variation might 
have on z-projections, a 20% image random sample from 
both datasets was used to cross-correlate ventricle area with 
z-projection size. The correlations were not significant at 
the 10% level. Further, even within-class correlation was 
not evident, two OASIS demented subjects differed 67% 
in ventricle area and only 2.2×10−4 percent in z-projection 
size. The reason for this outcome lies in the observation 
that ventricles are interpreted by OLS as zero pixel 
intensity background similar to that which fills the rectangle 
surrounding the brain scan. 

Interpretation of image model parameters for region of 
interest scans

ROI scan models can have more diagnostic potential 
than those of entire image scans. This derives from the 
fact that ROI regions can be modeled by generalized 
least squares (GLS). A smaller number of pixels make 
GLS computationally tractable and estimated parameters 
normally distributed. Consequently, one-way classification 
of regression models becomes a powerful diagnostic tool (22). 
In a preliminary study we showed that a 40×40 pixel ROI 
of an OASIS slice and a similar sized ROI one 1.5 mm slice 
above the first were significantly different at level 0.029 by 

a Snedecor F test. Clearly, such analysis also is applicable to 
therapy progress. 

Three color RGB images, such as prostate biopsies, 
require three OLS models which combine for the color 
model. Such models present no additional estimation 
problems but we still must work out how to compare images 
represented by three mutually exclusive groups of nine 
parameters each. 
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Appendix

A1—Derivation of the vec(At) transformation

We need to show ( ) ( )1 1
vec veck k

t t t tt t
c A c A

= =
=∑ ∑  

or equivalently (I) vec(cA) = cvec(A) and (II) vec(A+B) = 
vec(A) + vec(B). (I) is trivial since a matrix can be scaled by 
rows or columns. If A and B are m by n then A = [a1 a2 ...an] 
and B = [b1 b2 ... bn] so vec(A+B) = [a1

T+b1
T a2

T+b2
T... an

T+bn
T]T 

= [a1
T a2

T ... an
T]T + [b1

T b2
T ... bn

T]T = vec(A) + vec(B).

A2—Derivation of the wkl statistic

The well-known result using Eq. [3] in Eq. [7] is E(b) 
= β. Then for every k,l, and defining ( )2 varkl klbσ = , the 
Chebyshev inequality is:

( ) 2 2Pr /kl kl klb β ε σ ε α− ≥ ≤ =
 
[A1] 

Therefore a 1–α confidence interval for the true βkl satisfies:

( )Pr 1kl klb β ε α− ≤ ≥ −  [A2]

b and β have the same scale so it is clearly better to have 
a large estimated bkl and a small confidence interval for βkl 
than conversely. 

Thus, we normalize the confidence interval width 2ε by 
bkl, and define wkl = 2ε/bkl. The coefficient of variation of the 
estimate bkl is ckl = σkl / bkl  and klσ ε α= , so:

2 /
kl klw c α= [A3] 

Calculating wkl for a given model requires an estimate of  
2
klσ , the k,l diagonal element of the covariance matrix cov(b). 

From Eq. [3] in Eq. [7]:
cov(b) = E[(b – β)(b – β)T] =(XTX)-1XTcov(uo)X(XTX)−1        [A4]
and cov(uo) is readily estimated from the residual vector eo 
in Eq. [6].


